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ABSTRACT

EEG-based emotion recognition is an important branch in the field of affective computing. However,
individual differences and noisy labels seriously limit the effectiveness and generalizability of EEG-based
emotion recognition models. With the fast development of transfer learning, many domain adaptation and
generalization methods have been introduced into this field to promote the effect of emotion recognition.
In this project, I implement baselines, domain generalization and domain adpatation methods for the
EEG-based emotion recognition task. I implement abundant baseline models for the EEG-based emotion
recognition task, including SVM, MLP and ResNet. For domain generalization, I implement the Invariant
Risk Minimization domain generalization method. For domain adaptation, I implement 4 methods:
Transfer Component Analysis, Domain Adversarial Neural Network, Adversarial Discriminative Domain
Adaptation and Prototypical Representation based Pairwise Learning. Moreover, I compare these methods
in aspects of training stability and model performance in detail.
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1 Introduction

Recently, electroencephalography (EEG) based emotion recognition has become an increasingly important topic for affective
computing and human sentiment analysis [1, 2]. A proper design of EEG-based emotion recognition models is helpful
for facilitating the data processing, benefiting discriminant feature characterization, and lightening the model performance.
Currently, there exist two main critical issues in EEG-based emotion recognition. One is individual differences: how to build
a generalized affective computing model which could tolerate the remarkable individual differences in the simultaneously
collected EEG signals; and another is noisy label learning: how to train a reliable and stable affective computing model
which is less reliant on the subjective feedback.

In recent years, more and more researchers have focused on applying transfer learning methods to alleviate the individual
differences in EEG signals [3, 4, 5, 6, 7, 8] and improve feature invariant representation [9, 10, 11]. Considering the
individuals with and without labels (termed as source domain and target domain), transfer learning tries to minimize the
distribution difference between the source and target domains by approximately satisfying the assumption of independent
and identical distribution and can consequently realize a higher recognition performance on the target domain. Through
a domain-shifting strategy, the invariant feature representations across different domains are learned and the relationships
among the learned features, data distribution, and labels are explored.

In this project, I mainly complete work in the following three categories:

• I implement abundant baseline models for the EEG-based emotion recognition task, including SVM, MLP and
ResNet.

• I take advantage of domain generalization idea and implement the Invariant Risk Minimization[12] domain
generalization method for the EEG-based emotion recognition task and compare the results of IRM to the baseline
models in detail.

• I implement 4 domain adaptation method:Transfer Component Analysis[13], Domain Adversarial Neural
Network[14], Adversarial Discriminative Domain Adaptation[15] and Prototypical Representation based Pair-
wise Learning[16] for the EEG-based recognition task and compare these methods to baselines and IRM method in
detail.



2 Related Work

2.1 Non-deep transfer learning models

Transfer component analysis (TCA) was initially proposed by Pan et al. [13] to maximize the mean discrepancy between the
source and target domains by learning transfer information in a reproducing kernel Hilbert space. On the other hand, Zheng
and Lu [17] introduced two subject-to-subject transfer methods to handle the challenge of individual differences in EEG
signal processing. One approach involved discovering a shared common feature space underlying source and target domains
using TCA and kernel principal analysis (KPCA). These non-deep transfer learning strategies can bridge the gap between
two domains, but their limited accuracy and stability due to low complexity and small capacity may not meet the practical
requirements of EEG-based emotion recognition.

2.2 Deep transfer learning models

Deep transfer learning methods, such as domain-adversarial neural network (DANN) proposed in [14], are the basis of
most existing affective models. DANN aims to find a shared feature representation for source and target domains with
indistinguishable distribution differences and maintain the predictive ability of the estimated features on the source samples
for a specific classification task. Li et al. first introduced DANN. These models generally improve DANN’s performance in
solving EEG-based emotion recognition tasks from two directions, benefiting from the powerful feature representation ability
of deep networks and the high efficiency of adversarial learning in distributed adaptation.

2.3 Domain Generalization Method

Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and
the goal is to learn a model that can generalize to an unseen test domain. Great progress has been made in the area of domain
generalization for years. IRM[12] introduces Invariant Risk Minimization (IRM), a learning paradigm to estimate invariant
correlations across multiple training distributions. To achieve this goal, IRM learns a data representation such that the optimal
classifier, on top of that data representation, matches for all training distributions. Through theory and experiments, we
show how the invariances learned by IRM relate to the causal structures governing the data and enable out-of-distribution
generalization.

3 Method

3.1 Domain Adaptation

3.1.1 Transfer Component Analysis

Transfer Component Analysis (TCA)[13] is a domain adaptation technique that seeks to find a shared feature space between
a source domain S and a target domain T . Let XS and XT be the source and target data matrices, respectively, with ns and
nt samples and d features. The goal of TCA is to learn a transformation matrix A ∈ Rd×d that maps the source and target
data into a common feature space where the shared structure between the two domains is preserved.

To achieve this, TCA seeks to minimize a cost function consisting of two terms: a reconstruction error term that measures the
distance between the original and transformed data, and a distribution alignment term that measures the difference between
the source and target distributions in the transformed feature space. Specifically, the cost function can be written as:

min
A

∥XS −XSA∥2F + β∥XT −XTA∥2F + γ∥ATXS −ATXT∥2F (1)

where β and γ are hyperparameters that control the trade-off between the reconstruction error and the distribution alignment
term. The first term encourages the mapped source data to be close to its original values, the second term encourages the
mapped target data to be close to its original values, and the third term encourages the source and target data to have similar
representations in the shared feature space.

The optimal transformation matrix A can be obtained by solving the following eigenvalue problem:

XS
TKSXSA = XT

TKTXTAΛ (2)

where KS and KT are the kernel matrices of the source and target data, respectively, and Λ is a diagonal matrix of eigenvalues.
The transformation matrix A is then given by the first d eigenvectors corresponding to the largest eigenvalues.

Once the transformation matrix A is learned, it can be used to adapt a model trained on the source domain to work well on
the target domain by applying the transformation to the features of the target data. Specifically, given a target sample xT, the
adapted feature vector zT is obtained as:

zT = xTA (3)
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3.1.2 Domain Adversarial Neural Network

Domain Adversarial Neural Network (DANN)[14] is a domain adaptation technique that uses a neural network to learn
a shared feature representation between a source domain S and a target domain T while simultaneously minimizing the
difference between the distributions of the two domains in the shared feature space. The key idea behind DANN is to use a
domain classifier to distinguish between source and target samples and to train the feature extractor to produce features that
are indistinguishable between the two domains.

Figure 1: DANN Framework

The training of DANN involves two objectives: a supervised classification objective for the source domain and an unsupervised
domain adaptation objective that encourages the feature representation to be invariant to domain shift. The unsupervised
objective is achieved by introducing a domain adversarial loss that encourages the domain classifier to be unable to distinguish
between the source and target domains based on the learned feature representation.

Let XS and XT be the source and target data matrices, respectively, with ns and nt samples and d features. The DANN
architecture consists of three main components: a feature extractor f(·) that maps the input data to a shared feature
representation, a domain classifier D(·) that predicts the domain label of the features, and a task classifier G(·) that performs
the actual classification task (e.g., sentiment classification). Specifically, the domain classifier network is trained to predict
the domain of the input data, while the feature extractor network is trained to confuse the domain classifier by making the
shared feature representation indistinguishable between the source and target domains.

The overall objective of DANN can be written as:

min
f,G

max
D

Ls(f,G) + λLd(f,D) (4)

where Ls is the classification loss on the source domain, Ld is the domain classification loss, and λ is a hyperparameter that
controls the trade-off between the two losses. The domain classification loss is given by:

Ld(f,D) = − 1

ns + nt

ns∑
i=1

logD(f(xS
(i)))− 1

ns + nt

nt∑
j=1

log(1−D(f(xT
(j)))) (5)

where xS
(i) and xT

(j) are the i-th sample from the source domain and the j-th sample from the target domain, respectively.

The feature extractor and task classifier are trained to minimize the classification loss on the source domain and the domain
classification loss simultaneously, while the domain classifier is trained to maximize the domain classification loss. This
creates a competition between the feature extractor and the domain classifier, where the feature extractor tries to produce
features that are indistinguishable between the two domains, while the domain classifier tries to distinguish between the
source and target features.

Once the DANN is trained, the feature extractor can be used to extract features from the target domain, which can then be
used to perform the classification task on the target domain.

The Gradient Reversal Layer (GRL) is a key component in the Domain Adversarial Neural Network (DANN) architecture. It
is used to reverse the gradient during backpropagation through the domain classifier, which enables the feature extractor to
learn features that are domain-invariant.

The GRL is a simple layer that acts as the identity function during forward propagation, but negates the gradient during
backpropagation. Specifically, given an input x and a scalar weight λ, the output of the GRL is defined as:

GRL(x) = x+ λ · (−∇xL) (6)

where L is the loss function with respect to the domain classification task, and ∇xL is the gradient of the loss with respect
to the input x. The negative sign in front of the gradient ensures that the gradient is reversed during backpropagation.
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In the DANN architecture, the GRL is inserted between the feature extractor and the domain classifier to reverse the
gradient during backpropagation through the domain classifier, which forces the feature extractor to produce features that are
domain-invariant.

3.1.3 Adversarial Discriminative Domain Adaptation

Adversarial Discriminative Domain Adaptation (ADDA)[15] is a domain adaptation technique that uses adversarial training
to learn a feature representation that is invariant to domain shift. The key idea behind ADDA is to use a discriminative loss to
stablize the training process. Let S and T be the source and target domains, respectively, and XS and XT be the data matrices

Figure 2: ADDA Framework

with ns and nt samples and d features. The ADDA architecture consists of three main components: 2 feature extractors
Ms,Mt that maps the input data to a shared feature representation, a classifier C that performs the actual classification task
(e.g., sentiment classification) and a Discriminator D to discriminate between target data and source data.

ADDA introduces two separate feature extractors for the source and target domains. It uses a two-step training procedure,
where in the pre-training phase, only inputs from the source domain are used to update the parameters of the source feature
extractor and the label classifier. In the adversarial training phase, both inputs from the source and target domains are used to
update the parameters of the target feature extractor and the domain classifier, while keeping the parameters of the source
feature extractor and label classifier fixed.

To ensure stable adversarial training between the target feature extractor and domain classifier, ADDA uses the GAN loss
instead of the min-max game used in DANN. The adversarial loss is defined as:

LadvD
(Xs,Xt,Ms,Mt) = −Exs∼Xs

[logD (Ms (xs))]− Ext∼Xt
[log (1−D (Mt (xt)))] (7)

LadvM
(Xs,Xt, D) = −Ext∼Xt

[logD (Mt (xt))] (8)

To conclude, ADDA corresponds to the following unconstrained optimization:

min
Ms,C

Lcls (Xs, Ys) = −E(xs,ys)∼(Xs,Ys)

K∑
k=1

⊮[k=ys] logC (Ms (xs)) (9)

min
D

LadvD
(Xs,Xt,Ms,Mt) = −Exs∼Xs [logD (Ms (xs))]− Ext∼Xt [log (1−D (Mt (xt)))] (10)

min
Ms,Mt

LadvM
(Xs,Xt, D) = −Ext∼Xt

[logD (Mt (xt))] (11)

3.1.4 Prototypical Representation based Pairwise Learning

PR-PL[16] is a novel transfer learning framework with Prototypical Representation based Pairwise Learning (PR-PL) to
learn discriminative and generalized prototypical representations for emotion revealing across individuals and formulate
emotion recognition as pairwise learning for alleviating the reliance on precise label information.

Prototype feature extraction

PR-PL assumes that there exists a prototype for each emotion category. Through prototypical learning, the prototype features
are learned to indicate the representation property of every single emotion category. Based on the sample features extracted
from different subjects under different emotions, we could consider these sample features are distributed around the prototype
features. In other words, for each emotion category, the prototype features could be considered the "center of mass" of all
the sample features. From the perspective of a probability distribution, the prototype feature of an emotion category can be
regarded as the mean value of the sample feature distribution of the emotion, and the variance of the distribution is caused
by the non-stationary EEG, including but not limited to individual differences. Assume that the sample features under an
emotion category c obey the Gaussian distribution N . The prototype features of the emotion category c could be calculated as
the mean vector µc of the distribution. For the source domain data Xs, Ys = (xi, yi)

Ns

i=0, the corresponding sample features
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Figure 3: PR-PL Framework

are characterized by the feature extractor f(·), given as f(xi) (defined in Section III-A). The prototype feature vector of the
emotion category c can be calculated by averaging all the sample features that belong to this category, given as

µc =
1

|Xc
s |

∑
xs
i∈Xc

s

f (xs
i ) (12)

where Xc
s = (xs

i , y
s
i = c)

N
i=0 are a collection of source domain data belonging to the emotion category c. |Xs, c| is the

corresponding sample size in this emotion category. In other words, µc could be expressed as the centroid of the sample
features of Xs,c. The mean value calculation is a widely used, simple, and effective noise reduction strategy, which can make
the prototype features stronger than the sample features and help to alleviate the problem of the traditional DANN network
being susceptible to related noise interference. It is worth noting that since the calculation of the prototype features needs to
use emotional label information, we only use the source domain data here for prototype feature extraction.

Pairwise learning on source domain

Traditional pointwise learning algorithms often regard the feature vector l as the predicted label of the sample feature xi and
use the cross-entropy loss function to match the label yi of xi based on supervised training. Then, if the sample features
of one EEG trial match the prototype features of j-th emotion category the most, the EEG trial will be assigned to the j-th
emotion category. However, this type of pointwise learning only focuses on the relationship between sample features and
prototype features and ignores the relationship between different sample features. For example, the sample features belonging
to different emotion categories should be separated from each other, and the sample features belonging to the same emotion
category should be gathered together. To tackle this issue, we introduce pairwise learning to capture the inherent relationship
of samples.

For the source domain data Xs, Ys = (xs,i, ys)
Ns

i=1, the corresponding loss function for pairwise learning is defined as:

Lclass (θ) =
∑
i,j

L
(
rsij , g

(
xs
i , x

s
j ; θ

))
(13)

where g(xs
i , x

s
j ; θ) is the similarity measurement of the samples xs,i and xs,j , with the parameter of θ. According to the

assumption of pairwise learning, if ysi = ysj , then rsij = 1; otherwise rsij = 0. The loss function L(·) is a difference
calculation of rij and g.

L(rsij , g) = −rsij log g − (1− rsij) log(1− g) (14)

In the training process, the label information of source domain data is used to define r in a supervised manner. In other words,
based on the given information of Ys, if two samples belong to the same emotion category, then r = 1, otherwise r = 0. A
supervised r can ensure the stability of the training process and the generalization ability of the model. The next key question
is how to define a proper g to compute the similarity between xs,i and xs,j in terms of the characterized interaction features
(termed as li and lj). To make the similarity results locate in the range of [0, 1] and extract better and more robust feature
representations for subsequent emotion recognition, we add a norm restriction on l as

lnorm =
l

∥ l ∥2
(15)
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The similarity of lnormi norm and lnormj norm is calculated as the cosine similarity, given as

g = lnormi l̇normj =
lsi l̇

s
j

∥ lsi ∥2∥ lsj ∥2
(16)

where refers to inner product operation. As stated in Chang et al. [32], the above-mentioned norm restriction can make
the vector l have a clustering function, and the elements in the vector represent the probability that the feature belongs to a
certain category cluster. Overall, the objective function of pairwise learning on the source domain is defined as

Ls
pairwise =

∑
i,j

(rsij ,
lsi l̇

s
j

∥ lsi ∥2∥ lsj ∥2
) + β ∥ PTP − I ∥F (17)

Pairwise learning on target domain

Besides of source domain, PR-PL also introduces the pairwise learning on the target domain to improve the feature separability
in the target domain, as

Lt
pairwise =

∑
i,j

(rtij ,
lti̇l

t
j

∥ lti ∥2∥ ltj ∥2
) (18)

which is termed as unsupervised pairwise loss . Here, lt is the interaction features of the target domain data characterized.
The scalar rtij symbolizes the pairing relationship of the samples in the target domain.

3.2 Domain Generalization

3.2.1 Invariant Risk Minimization

Invariant Risk Minimization (IRM)[12] is a domain generalization framework that aims to learn a model that is robust to
distribution shift by discovering features that are invariant across different domains. The basic idea behind IRM is to learn a
model that performs well across all the domains, instead of just learning a separate model for each domain. To achieve this,
IRM minimizes a novel objective function called the Invariant Risk Minimization objective, which ensures that the model is
invariant to the distribution shift across different domains.

Let E = 1, 2, ..., E denote the set of E different environments, and let De = (x
(e)
1 , y

(e)
1 ), ..., (x

(e)
n , y

(e)
n ) denote the dataset

of n labeled samples drawn from environment e ∈ E . The goal of IRM is to learn a model f(·) that is invariant to changes in
the distribution of the input data across all environments in E .

The IRM objective can be formulated as:

min
f(·)

E∑
e=1

Le(f(·)) subject to f(·) ∈ Finv (19)

where Le(f(·)) is the empirical risk on the dataset De under the model f(·), and Finv is the set of functions that are invariant
to changes in the distribution of the input data across all environments.

To identify the invariant features, IRM uses a penalty function that encourages the model to use only those features that
remain invariant across all environments. The penalty function can be formulated as:

Ω(f(·)) =
E∑

e=1

||∇xLe(f(·))||2 (20)

where || · || denotes the L2 norm and ∇x is the gradient with respect to the input features x. The penalty function encourages
the model to select features that have small gradients across all environments, since these features are less likely to change
across different environments.

The final IRM objective can be written as:

min
f(·)

E∑
e=1

Le(f(·)) + λΩ(f(·)) subject to f(·) ∈ Finv (21)

where λ is a hyperparameter that controls the trade-off between the empirical risk and the penalty function.

By enforcing the invariance constraint, IRM learns a model that is robust to distribution shift across different domains. This
is because the model learns to focus on features that are invariant across all the domains, and ignores features that are specific
to individual domains. Therefore, the model is able to generalize well to new domains that were not seen during training.
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4 Experiment

For the experiment setting, all the experiments are done on i9-10900X CPU @ 3.70GHz along with a GeForce RTX 3090
GPU. The SVM baseline is implemented by the scikit-learn library[18]. All the other deep learning methods are implemented
based on the PyTorch[19]. In this section, I will first show the way of searching hyperparameters, then show the general
results and comparison of different methods. At last, I will take Fold:12 as example to look in to the training details and
quantitative experimental results of each method.

4.1 Hyperparameter Search

In order to search the best hyperparameter, I use sweep function in wandb[20]. It use the Bayes Search method to search in
the given range of hyperparameters. Bayesian optimization can be used to search for a set of hyperparameters that results in
the best performance of the model on a given task.

The key idea behind Bayesian optimization is to use a probabilistic model, such as a Gaussian process (GP), to approximate
the unknown function that maps hyperparameters to model performance. The GP is initialized with some prior distribution
over the function, and as the optimization proceeds, the prior is updated based on the results of evaluating the function at
different hyperparameter settings.

At each step of the optimization, the Bayesian framework suggests a new set of hyperparameters to evaluate by balancing
exploration of new regions of the hyperparameter space and exploitation of the current best hyperparameters. The exploration-
exploitation trade-off is achieved by using an acquisition function, which guides the search by estimating the expected
improvement in model performance that can be obtained by evaluating the function at a new set of hyperparameters.

The Bayesian optimization algorithm proceeds iteratively until some stopping criterion is met, such as a maximum number of
evaluations or a threshold on the improvement in model performance.

I choose Fold:12 of DANN to conduct the search. The results is shown in Fig:4.

Figure 4: Hyperparameter Search Results

After conducting hyperparamter search, I finally choose the hyperparameters as follows:

• For SVM, I use linear kernel with C=0.01.

• For MLP, TCA, DANN, ADDA and IRM, I use the Adam optimizer implemented in PyTorch with learning rate
setting to 1e-3. I don’t use weight-decay since there are experiments that proof that weigtht decay may damage the
performance of the model. The batch size is set to 256 after conducting Bayes search for a best batch size.

• For ResNet, I use the same hyperparameter as in Project 3.

• For PR-PL, I use the same hyperparameter as illustrated in the paper[16].

4.2 General Results

In this section, I first show the results of the methods used in this project. The quantitative experimental results are shown in
Tab:1 and Fig:5.
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Method Model Fold 0 Fold 3 Fold 6 Fold 9 Fold 12 Mean(↑)±Std(↓)

Baseline
SVM 0.3741 0.3399 0.3694 0.4153 0.5042 0.3566 ± 0.0732
MLP 0.5082 0.5661 0.5549 0.6411 0.7864 0.5530 ± 0.1101

ResNet 0.5022 0.4391 0.4503 0.5948 0.6646 0.5024 ± 0.1023
Domain Generalization IRM 0.4990 0.5046 0.5601 0.6806 0.7693 0.5573 ± 0.1199

Domain Adaptation

TCA 0.3866 0.4941 0.5195 0.5637 0.7707 0.5114 ± 0.1078
DANN 0.5737 0.5417 0.6603 0.7234 0.8052 0.6253 ± 0.0796
ADDA 0.4923 0.5164 0.5746 0.6845 0.7456 0.5614 ± 0.1022
PR-PL 0.7579 0.6489 0.5914 0.7786 0.7427 0.6498 ± 0.0823

Table 1: 15-fold cross validation results on SEED-IV dataset

Figure 5: Comparisons between different methods across 15-fold validation

Baseline methods:

The Baseline methods include three models: SVM, MLP, and ResNet, which are trained on the source domain data and
tested on the target domain data. SVM performs the worst among the Baseline methods, with a mean accuracy of 0.3566,
indicating that the linear SVM model is not able to capture the complex patterns in the target domain data. MLP and ResNet
perform better than SVM, with mean accuracy values of 0.5530 and 0.5024, respectively. These results suggest that the
neural network models are better suited to handle the complexity of the target domain data.

Domain Generalization method:

The Domain Generalization method uses the Invariant Risk Minimization (IRM) algorithm, which aims to find a model that
performs well on multiple related domains. The mean accuracy of IRM is 0.5573, which is higher than all the Baseline
methods, indicating that domain generalization can improve the model’s performance. However, the improvement is relatively
small compared to the best performing Domain Adaptation method.

Domain Adaptation methods:

The Domain Adaptation methods aim to adapt the model to the target domain by incorporating the target domain data during
training. There are four Domain Adaptation methods evaluated in this study: TCA, DANN, ADDA, and PR-PL.

TCA: TCA is a domain adaptation method that applies a kernel transformation to align the source and target domains in a
shared feature space. The mean accuracy of TCA is 0.5114, which is higher than all the Baseline methods and the Domain
Generalization method, indicating that domain adaptation can improve the model’s performance. However, the improvement
is relatively small compared to the other Domain Adaptation methods.

DANN: The mean accuracy of DANN is 0.6253, which is higher than all the Baseline methods and the Domain Generalization
method, indicating that domain adaptation can improve the model’s performance. DANN performs better than TCA, indicating
that the domain adversarial loss is a more effective way to align the feature distributions than kernel transformation.

ADDA: The mean accuracy of ADDA is 0.5614, which is higher than all the Baseline methods and the Domain Generalization
method, but lower than DANN. This suggests that the two-stage approach may not be as effective as the domain adversarial
loss in aligning the feature distributions.
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PR-PL: PR-PL is a domain adaptation method that combines adversarial domain adaptation and prototypical learning. The
mean accuracy of PR-PL is 0.6498, which is the highest among all the methods evaluated in this study. This indicates that
PR-PL is the most effective method for adapting the model to the target domain data. However, it is worth noting that the
standard deviation of PR-PL is relatively high (0.0823), indicating that the performance of PR-PL varies considerably across
the different folds.

Among the Domain Adaptation methods, PR-PL achieves the highest mean accuracy (0.6498), followed by DANN (0.6253),
ADDA (0.5614), and TCA (0.5114). The results suggest that PR-PL is the most effective method for adapting the model to
the target domain in this particular dataset. However, it is worth noting that the standard deviations for all Domain Adaptation
methods are relatively high, indicating that their performance varies considerably across different folds.

In summary, the Domain Adaptation methods outperform the Baseline methods and the Domain Generalization method,
indicating that explicitly adapting the model to the target domain can be beneficial. Among the Domain Adaptation methods,
PR-PL performs the best,

4.3 Baseline

4.3.1 MLP

The loss curve and training accuracy curve of MLP is shown in Fig:4.3.1.

Figure 6: Experiment Results of MLP

In the 14th epoch, the loss on the training set was 0.0811, and the training accuracy was 0.9893. On the other hand, the
testing accuracy was 0.7864, which suggests that the model may be overfitting to the training data since the testing accuracy
is significantly lower than the training accuracy.

In the following epochs, the loss and training accuracy remain relatively stable, with some fluctuations. However, the testing
accuracy fluctuates more significantly, with some epochs having a higher testing accuracy than the previous epochs, while
some have a lower testing accuracy.

From the overall trend, we can see that the testing accuracy never reaches the same level as the training accuracy, indicating
that the model may be overfitting.

4.3.2 ResNet

The loss curve and training accuracy curve of ResNet is shown in Fig:4.3.2.

Figure 7: Experiment Results of ResNet
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Looking at the result, we can see that the model’s training loss and accuracy values gradually improved as the number of
epochs increased. Specifically, the training loss decreased from 0.75 to 0.003, and the training accuracy increased from 0.78
to 1.0. This suggests that the model was learning to fit the training data well.

However, when looking at the validation accuracy values, we can see that the model’s performance was not consistently
improving. The validation accuracy fluctuated between 0.445 and 0.617, and there were even some epochs where the
validation accuracy decreased. This suggests that the model may have been overfitting to the training data, meaning that it
was performing well on the training data but not generalizing well to new data.

Overall, this result suggests that the ResNet model was able to achieve a high level of accuracy on the training data but had
difficulty generalizing to new data. Further analysis, such as hyperparameter tuning or regularization techniques, may be
necessary to improve the model’s performance.

4.4 Domain Adaptation

4.4.1 Transfer Component Analysis

The trend of train loss curve and train accuracy curve of TCA is quite similar to the MLP baseline. Besides, after adding the
regularization loss, the performance of the TCA improves a lot compared to the MLP baseline.

4.4.2 Domain Adversarial Neural Network

The loss curve and training accuracy curve of Domain Adversarial Neural Network is shown in Fig:4.4.2.

Figure 8: Experiment Results of DANN

The result shows that the network starts with low accuracy on both training and test data and gradually improves with each
epoch. The class loss and domain loss both decrease during training, indicating that the network is improving at both tasks.

The test accuracy starts at 43.67% and ends at 80.52%, showing a significant improvement over training. The best test
accuracy is achieved at epoch 55, where it reaches 80.52%.

The training accuracy follows a similar trend, starting at 38.20% and ending at 93.75%. The best training accuracy is achieved
at epoch 74, where it reaches 93.75%.

It is worth noting that the training accuracy is consistently higher than the test accuracy, indicating some overfitting. The
domain loss is generally higher than the class loss, indicating that the domain adversarial task is harder for the network than
the classification task.

Overall, the result shows that the DANN is effective at learning a domain-invariant feature representation for the classification
task, but there is still room for improvement in terms of reducing overfitting and improving domain adversarial performance.
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4.4.3 Adversarial Discriminative Domain Adaptation

The loss curve and training accuracy curve of Adversarial Discriminative Domain Adaptation is shown in Fig:4.4.3.

Figure 9: Experiment Results of ADDA

The training of ADDA is split into two stages: pretrain and train. In the pretrain stage, the model is trained on a source
dataset, and in the train stage, it is fine-tuned on a target dataset.

The pretrain stage has 20 epochs. The training accuracy steadily increases throughout the epochs, starting at 0.7910 and
ending at 0.9835. The test accuracy also shows improvement, starting at 0.7485 and ending at 0.8196, although it has some
fluctuations along the way.

The train stage also has 20 epochs. However, the training accuracy is consistently high, starting at 0.9837 and ending at
0.9833. The target dataset accuracy, on the other hand, shows a different pattern. It starts at 0.7704 and drops significantly in
the first few epochs, reaching a low of 0.4301 by the end.

4.4.4 Prototypical Representation based Pairwise Learning

The loss curve and training accuracy curve of Prototypical Representation based Pairwise Learning is shown in Fig:4.4.4.

Figure 10: Experiment Results of PR-PL

The result shows that the network starts with low accuracy on both training and test data and gradually improves with each
epoch. The loss decrease during training, indicating that the network is improving at both tasks.

The test accuracy starts at 0.4142 and ends at 0.7427, showing a significant improvement over training. The best test accuracy
is achieved at epoch 72, where it reaches 0.7427.
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The training accuracy follows a similar trend, starting at 0.2970 and ending at 0.9618. The best training accuracy is achieved
at epoch 79, where it reaches 0.9618.

Overall, the result shows that the PR-PL is effective at learning a domain-invariant feature representation for the classification.

4.5 Domain Generalization

4.5.1 Invariant Risk Minimization

The loss curve and training accuracy curve of Invariant Risk Minimization is shown in Fig:4.5.1.

Figure 11: Experiment Results of IRM

Epoch 0 starts with a high loss of 1.1484, but the training accuracy is 0.7524, and the test accuracy is 0.7341, indicating that
the model is learning something from the training data, but not generalizing well to the test data.

In the subsequent epochs, the loss decreases, and both the training and test accuracies increase, which suggests that the model
is improving. From epoch 5 onwards, the model achieves a higher test accuracy than the previous epoch, indicating that the
model is starting to generalize better to unseen data.

However, the result also shows that the performance of the model on the test set fluctuates across epochs. For example, the
test accuracy drops from 0.7693 in epoch 5 to 0.7190 in epoch 6, and then increases to 0.7234 in epoch 7. Similarly, the test
accuracy drops from 0.7293 in epoch 10 to 0.7034 in epoch 12.

Overall, the result shows that the model trained using IRM is able to learn from the data and improve its performance over
time, but it struggles to generalize well to unseen data, and its performance on the test set is somewhat unstable across epochs.
Further analysis is needed to determine the cause of these issues and improve the model’s performance.

5 Conclusion

In this project, I implement baselines, domain generalization and domain adpatation methods for the EEG-based emotion
recognition task. I implement abundant baseline models for the EEG-based emotion recognition task, including SVM, MLP
and ResNet. For domain generalization, I implement the Invariant Risk Minimization domain generalization method. For
domain adaptation, I implement 4 methods: Transfer Component Analysis, Domain Adversarial Neural Network, Adversarial
Discriminative Domain Adaptation and Prototypical Representation based Pairwise Learning. Moreover, I compare these
methods in aspects of training stability and model performance in detail.

After carefully looking into the quantitative experimental results and comparing the training stability and model performance
of methods mentioned above, I come up with the conclusion that PR-PL model performs best, followed by DANN, in this
project for the EEG-based emotion recognition task. This conclusion is reasonable as PR-PL model take advantage of
prototype feature extraction and pairwise learning and it is a DANN-based model, in another word, it has all the advantages
which DANN possesses.
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IEEE signal processing letters, 26(5):710–714, 2019.

[10] Ozan Özdenizci, Ye Wang, Toshiaki Koike-Akino, and Deniz Erdoğmuş. Learning invariant representations from eeg
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